
A Computational Intelligence (CI) Approach to the Precision Mars Lander Problem

Brian Birge

Gerald Walberg

Performance Report submitted under NASA Grant #NAG-1-01111 for the period

5/16/01 to 5/15/02

Abstract

A Mars precision landing requires a landed footprint of no more than 100 meters. Obstacles to reducing the
landed footprint include trajectory dispersions due to initial atmospheric entry conditions such as entry

angle, parachute deployment height, environment parameters such as wind, atmospheric density, parachute
deployment dynamics, unavoidable injection error or propagated error from launch, etc. Computational

Intelligence (CI) techniques such as Artificial Neural Nets and Particle Swarm Optimization have been
shown to have great success with other control problems. The research period extended previous work on
investigating applicability of the computational intelligent approaches. The focus of this investigation was

on Particle Swarm Optimization and basic Neural Net architectures. The research investigating these issues
was performed for the grant cycle from 5/15/01 to 5/15102. Matlab 5.1 and 6.0 along with NASA's POST

were the primary computational tools.

Nomenclature Important Files Used

Activation Function Data & input: Program & Control:
Artificial Neural Net [bkb3guess.dat chutestatplot.m

Backpropagation I chutestates.dat demonormalize.m
Bank Angle [fulliris.txt f6.m

Computational Intelligence I prntblk.bak learnga.m
Epoch [prntblk.dat learnlm.m

Evolutionary Computation [pvstates.dat load DATA_mat.m
Firewire [bc4batch.mat m2001 viewsite.m

Generalization I chutestatplot.mat MatPathData,m
Genetic Algorithms] copy_of bc 1871.mat nettrainer2.m

Hyperspace [copy_of lc.mat normalize.m
Inverse Control I copy of lc1747_18.mat p2check.m

Iris Data Set I copy_of m2001newbase.mat p3dbatchSPACE2000.m
LM I copy_of rwplrps.mat p3dbatchspace2000PSO.m

Mars Sample Return Mission I forward.mat pso.m
MarsGram] forward3.mat testf6.m
Matlab) inverse.mat testnettrainer.m

Multilayer I IrisWtsLM.mat testpso.m
Open Loop] lc4batch.mat tga2.m

Particle Swarm Optimization 1 lcsaveas.mat tlm2.m
POST I nettrain-76init-bc 17baseline.mat tpso2.m
Sigmoid I nettrain-76init-bc 17baselineMOD.mat trainbpx.m

I nettrain-nominit-bc 17baseline.mat trainga.m
I nettrain-nominit-bc 17baselineMOD.mat trainlm.m

I nettrainer-weights.mat trainpso.m
I nettrainer-wts- 1layer.mat unwrapmat.m

1 nettrainer2-wts- 1layer-inertialBPX.mat wrapmat.m
1 nettrainer2-wts- 1layer-inertiailm.mat

I nettrainer2-wts-llayer-inertialPSO.mat
I pathdatl.mat

Introduction

The Mars Rover Sample Return Mission (MRSR) requirements make the development of an accurate

descent control system challenging. A Mars precision landing requires a landed footprint of no more than 1
kilometer. In contrast, the Viking mission had a landing footprint of over 100 kilometers (excellent for that

particular mission requirement). The current state of the art's footprint is still in the magnitude of
kilometers.

Obstacles to reducing the landed footprint include trajectory dispersions due to initial atmospheric entry
conditions (entry angle, parachute deployment height, etc.), environment (wind, atmospheric density, etc.),

parachute deployment dynamics, unavoidable injection error (propagated error from launch on), etc.

In recent years, a number of computational techniques that lend themselves particularly well to control

problems have become available. In broad categories they are Fuzzy Systems (FS), Artificial Neural
Networks (ANN), and Evolutionary Computation (EC). Fuzzy Systems are based on fuzzy logic which is in

turn based on the way our mind deals with incomplete and/or inaccurate information. Neural Nets are
modeled after the spatial structure of the brain and allow 'connectionist' learning properties. Evolutionary

computation paradigms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are
loosely modeled after biological evolution and optimization. These techniques have been shown
individually to work very well in solving a large number of problems in linear and nonlinear system

identification, modeling, and control.

Until recently FS, ANN, and EC were totally separate fields with very little interaction. A growing number
of researchers and practical engineers are discovering that a combination of two or more of these methods

offers advantages that a single one lacks.

Using an ANN in a control system we add fault tolerance, distributed (connectionist) representation

properties, and the ability to learn optimal responses to new input. If we add an FS 'shell' we include high
level rule/decision abilities as well as comparative reasoning. Combining techniques this way is called

Computational Intelligence (CI).

This paper describes ongoing research into using CI strategies for the MRSR mission as well as other Mars
Lander missions.

Problem Setup
The problem examined is that of the re-entry of the proposed Mars 2001 lander. The lander specifications
and landing site are all taken from the Mars 2001 conditions as related by Powell, Striepe, and Queen. The
initial conditions are defined as within the cloud set developed by Powell. These initial conditions reflect a

point of parachute deployment of the lander after it has completed the first leg of re-entry and consist of

approximately 2000 possible starts within 10km dispersion. The 2000 points were reduced to 76 points by
taking the convex hull of both the position and velocity subspaces. This results in a data set of initial
conditions reflecting the extremes in handoff position and velocity. In addition, one initial point was

computed from the averages of the complex hull and taken to be the nominal initial condition. These initial

conditions represent the currently expected diversion of any Mars re-entry.

Lander Scenarios

The input deck setup to run with these initial conditions was a ballistic parachute deceleration followed by
'fire-wired' steerable parachute descent. This scenario has been determined from previous work to have the

best tradeoffs between practicality, stability, and performance.

POST was used to target and optimize to desired end states. Because this input deck has been examined in

the previous work only a brief overview is presented here.

The lander simulation starts off with one of the 77 representative initial conditions. This includes all

position and velocity data along with a time of day and basic weather model slightly modified from the
MarsGRAM model. The modification is only in the wind strengths, using the Braun multipliers.

ThePostdeckdeploystheballisticchuteandatsomecontrollabletimeit turnstheballisticparachuteintoa
steerableparachute.Thenseveraleventsfollowwherethecontrolleris giventheopportunitytochange
bankangleofthelander,allwithagoalofminimizingdistancetotarget.Ataheight1000mabovesurface,
wheresurfaceis takentobeat2500m,theparachuteisjettisonedandthelanderperformsareversegravity
turndescentonthrusterstoachievedesiredendvelocity.

Controller Training
This section describes motivation and previous research.

For this deck, the POST optimizer was turned off. The initial guesses for the controller (bank angles and

times of occurrence) were generated in an offline data file to be fed to the deck on simulation start. For the
nominal initial condition, which was the average of the extreme initial conditions, a set of controls was

found by trial and error that would achieve fairly good results. These 'nominal initial" controls were then
perturbed over a fairly large range for each initial condition, taking into account limits on bank angle, etc.

For a situation where there was only one bank angle command at a controller specified time, we had 2
controls:

1) time to turn parachute into steerable, also same as first bank angle command time
2) bank angle command

From pt'evious work it was seen that a series of commanded bank angle turns yielded better results, so for a

deck with 3 events we have 6 controls. Each set of these controls is perturbed parametrically and re-run on
the same deck, i.e. for a deck with 2 control parameters the initial controls are run, then control 1 is

changed slightly, deck is run again, then control 1 is changed again, and deck is run again. This is done
until we get the whole range of possible (or at least reasonably expected) values for the control I. Then

control 2 is slightly changed and the whole parametric study of control 1 is re-done for the new control 2.
The whole thing is repeated until we get a database reflecting the entire ranges of control 1 and 2.

At the end of each run, all starting and ending trajectory data is saved. So for a deck with 6 controls and

reasonably non-limiting control ranges, we have an immense amount of data to sift through. This data was
used to train an artificial neural net as an inverse controller. The ending conditions along with initial

conditions (inertial or relative position and velocity - both were tried) were the net's inputs and the set of
controls needed were the output. So for our 6 control deck we have a net with 12 inputs and 6 outputs.

Not all of the collected data was used for training the net, about 20% was held back for testing after training
was done. The trick to training is to make sure the data is well prepared.

To this end a variety of things were tried. First, all the training data was normalized. This is a standard

practice when using the traditional training algorithms. This required developing an algorithm that would
normalize whatever data was given to it and save the normalizing factors so future unknown data could also

be normalized in exactly the same way. This was coded as a matlab function where you could choose
several types of normalization of scalars, vectors, or matrices. Also the inverse function was written, to get

the normalized data (usually a large matrix) back into the original form.

The above processes yielded several data sets that were all extremely large. These data sets were fed to an

algorithm that built up an artificial neural net. The algorithm started with a single hidden layer and a single
hidden neuron and attempted to train. If it didn't train successfully within a user adjustable time frame

(usually was set to 10000 epochs) then another neuron was added to the hidden layer and the process
started over. There were several training methods employed also. The control was standard

backpropagation, essentially gradient descent. The problem with this is that it is slow and prone to local
minima in the problem space. Since the data set was nonlinear and hugely multi-dimensional and also just

huge in amount, there were a lot of chances to run into local minima. And that is just what happened. Each
training run took several days to complete using the NASA VAB computers because of the size of the sets

but almost never did the runs train to the minimum error criterion. Rather they stopped at the maximum

numberof hiddenneurons.Eachtrainingrunshowedaquickdropinerrorinitiallytoaplateauthatjust
wouldnotgoaway,nomatterwhichtrainingsetwastried.

Thetrainingsetswerethenpareddowninsizebyabout50%.Theseseemedtotrainwellbutgeneralization
wasadistinctproblem.Thatis,feedingindatathatthenethadnotseenyet(fromthetestset)didnotyield
thedesiredoutputs.In fact,theoutputwasextremelysensitiveto veryslightchangesin inputparameters
andwouldoutputunusablecontrols.Forexample,aninputsetmightyieldadesiredcontrolof>90degrees
inthebankangle,asurewaytocrashthesimulation.

TheabovewasthentriedwiththeLMtrainingmethod.Wewerestillusingthesameneuralnetarchitecture
andtrainingsets(normalizedfull,non-normalizedfull,normalizedsubset,non-normalizedsubset)butthe
trainingofthenetwasperformeddifferently.

LM isamethodthatcanbeconsideredasanimprovedbackpropagationmethod.It ismuchfasterandis
alsobetteratavoidinglocalminimain theproblemspace(thoseplateausweranintoduringprevious
training).Butit stillsuffersfromtheheritageof beingbasicallyagradientdescentalgorithm.Thatisall
backgroundonthepreviouswork.Aftertheaboveit wasdecidedtotakeastepbackanddoanexhaustive
examinationonthecomputationalintelligenceparadigmitself.Wasit thehugeamountofdatathatwasthe
problem,wasit aflawinthewholeapproach,or isit somethingelseoracombinationofotherthings'?

Generalized Study

To this end, several strategies were examined without using the POST generated data, rather mc_re generic
test sets provided by the literature were used. The basic architecture was examined including the activation

functions, as were the training methods, all with a view to a more basic understanding of the process.
Generalization, training time, and processing power were the important parameters under consideration.

Several small parametric studies examined parameter modification in artificial neural nets. The goals were
to understand how these parameters affect:

1) Generalization, how does the net handle inputs its never seen?

2) Training Time, epochs needed to drive error to desired
3) Processing Load, number of neurons needed to successfully train

In brief, the following areas were examined:

1) Neural Net Architectures
2) Test Sets

3) Data Representation

4) Training Methods

Neural Net Architectures

There are 2 basic architectures that were looked at, a single hidden layer network and a dual hidden layer

network. The effect of one hidden layer vs. two' hidden layers was examined with respect to:

Generalization, Training Time, and Processor Load.

1) Single hidden layer network

2)Dualhiddenlayernetwork

Eacharchitecturehasavaryingnumberof nodesineachlayer,aboveisjustforillustration.

ThebareminimumofnodesforeachpermutationwascalculatedinMatlab.Thiswasdonebystartingwith
asingleneuronineachhiddenlayerandattemptingtotrain.If theerrorgoalwasnotmetthenaneuronwas
addedincrementallyandtrainingstartedagain.For the dual layer case, the second hidden layer would be
incremented first and then the first layer. This was so that one hidden layer would not be much larger than

the other. The neuron numbers grew until the error goal was reached within 5000 epochs. For the single
hidden layer, a maximum of 20 hidden layer neurons was specified. For the dual hidden layer, a maximum
of 10 neurons for each layer was specified. If incrementing to these numbers still did not reach the error

goal then that 'architecture/activation function/training set %/data format' combination was not trainable.

This 'growth' of neurons was implemented specifically to find the minimum number of neurons needed to

train each parameterized combination. Since the eventually designed controller is meant to be onboard the
lander, the processor load must be as streamlined as possible. Finding the minimum number of neurons to

train is a big step in this.

The hidden layer for the networks consisted of sigmoid functions using either the Matlab 'logsig' function
and 'tansig'. When they were used is discussed in the data representation section. All output layers were

linear using the Matlab 'purelin' function.

The classic activation function used for the hidden layer neurons is called the 'logistic sigmoid' function

and is given by:
1

f(x) -
l+e -x

This function has an output between 0 and 1 and has a characteristic curve giving it the common name: "S-
function". The Matlab name for this function is 'logsig'.

The second function is a variation on the sigmoid function called the 'hyperbolic tangent' and looks like:

f(x) = tanh(x)

The function has an output between [-1, 1] with the Matlab function name of _tansig'.

The standard linear function was used for the output layers:

f(x)=x

Notice the difference between the logsig and the tansig functions are only in the output range. Tansig is
symmetric about zero while logsig is symmetric about one.

Theinput/outputgraphsoftheactivationfunctionsusedlooklikethefollowingfigure.

purelin 1ogsig

1o !

i'f

-I
/ j_:,¢

-tO 0 tO -_O 0 10 -IO

lansig

J
(_ tO

Both the sigmoid and hyberbolic tangent are non-linear equations and are known to work well with non-

linear problems. The linear function is traditionally used in the output layer of a pattern classification
network.

Test Sets

Before re-trying the POST data on the neural net, three standard test sets were examined.

1) XOR

2) Iris
3) Schaffer f6

The test sets were chosen because they represent a complexity increasing standard non-linear test bed for

computational intelligence algorithms. That is, if the methods work on these 3 known data sets then they
should also work on the POST generated data sets or POST generated real-time data. If they don't work on

the POST data at that point then logic would suggest that the method of gathering data should be fine tuned

rather than the training algorithm.

XOR

The XOR test set is the standard modified OR logic, shown by the following,

Input Output
(0,0) 0
(0,1) 1

(l,o) J

(1,1) o

Iris

The 'Iris' data set is a famous set of parameters that describes 3 separate species of Iris flowers. They are
classified by sepal width, sepal length, petal width, and petal length. There are 150 states in the set, each of

the 3 flowers gets 50 states. So, this set can be thought of as a 4 input, single output system. The four inputs
would be the petal/sepal parameters and the output is a number that corresponds to the flower classification.
In this case, flower 1 = 1, flower 2 = 2, and flower 3 = 3. The Iris data set is a non-linear mapping, hence it

is an excellent test base for artificial neural network and more general computational intelligence research.

The full non-normalized Iris Data Set is presented in the appendix.

For example, the first 6 entries of the set in its raw form look like:

Species Sepal Sepal Petal Petal

length width length width

1 49 30 14 2

1 51 38 19 4

1 52 41 15 1

1 54 34 15 4

1 50 36 14 2

1 57 44 15 4

The data was split up into three parts, representing each flower classification. Then a percentage of each of

these three subsets was taken for training the neural nets and the rest was taken for testing. Splitting the

full set up into 3 subsets based on each species guaranteed that each species would get equally represented

training. 50% of the training set was used leaving 50% for testing respectively.

Schafferf6

The f6 test set is derived from the f6 equation. It is highly nonlinear with a single known global minimum

at (0,0). There are plenty of opportunities for computational intelligence algorithms to get stuck in local

minima, so this test set is very good for testing that aspect.

z = 0.5+ (sinZ(sqrt(x2+yZ))-0.5)/((1+0.01 *(x2+yZ)) 2)

Data Representation
The Iris data set represents characteristics for 3 different species of flowering Iris plant. This data can be

represented two separate ways easily in a neural network.

First, the net can be trained to output a single number. This number will represent one of the three flowers.

In this project the specific numbers are: flower 1 = 0.33, flower 2 = 0.66, flower 3 = 1.0. If the net output a
number within +/-20% of the target, that was deemed close enough to consider as a match. For example,

anything between .80 and 1.2 would equal species 3.

Secondly, the net can be trained to output a single state. For this, three outputs were used instead of one.

The target was:

[1,0,0] = flower 1

[0,1,0] = flower 2

[0,0,1] = flower 3

The output was considered a match if the magnitude of one of the columns was larger than the other two.

For example, a result of [0.6,0.9,-0.1] would be interpreted as indicating flower 2 since 0.9 is larger than
the other 2 columns. Then we just filtered for this condition with basic logic.

In addition we can choose to normalize or not. Traditional methods call for normalizing all data. The

Matlab implementations used in the coding of this project do not require normalization in order to produce
results. So a run was performed with normalization and without and then compared for the properties of

generalization, training time, and processor load.

The first six entries of normalized Iris data look like:

0.3333 0.6203 0,6818 0.2029 0.0800

0.3333 0.6456 0.8636 0.2754 0.1600
0.3333 0.6582 0,9318 0.2174 0.0400

0.3333 0.6835 0.7727 0.2174 0.1600
0.3333 0.6329 0,8182 0.2029 0.0800

0.3333 0.7215 1,0000 0.2174 0.1600

It is the same data, just normalized. Similar concepts were applied to the XOR data while the f6 dataset was

left alone since it has one minimum and is already normalized. We can relate this to the MRSR lander
problem by recognizing that if we don't have to normalize we are better off computationally, especially

since normalization requires us to know the extremes if the raw data which we may not know. But
normalization may make the net (hence the controller) train to new data quicker and/or with less

computational power. It's a trade off we need to know more about. Also we would like to know if the
controller will work better if we had the output neurons hold a single value for bank angle or perhaps 2

output neurons each with a bank angle, one representing a negative bank.

For the normalized data sets the 'logsig' function was used in the hidden layers as we only need to worry
about the range [0, 1] for the data. For the non-normalized data sets the 'tansig' function was used in the

hidden layers.

Training Algorithms
The training algorithms investigated have been:

1) Gradient Descent, i.e. Standard Backpropagation
2) LM (modified gradient descent)
3) Particle Swarm Optimization (PSO)

Gradient Descent

Standard Backpropagation algorithm, weights of the net are changed according to a difference in error
between previous and present values. This is the control case. Prone to local minima.

LM

A much improved version of gradient descent. It is faster, more robust, and less computationally intensive

overall but suffers from some of the same handicaps such as it can train any network as long as its weight,
net input, and transfer functions have derivative functions. Less prone to local minima but still easily

caught.

Particle Swarm Optimization
In theory the PSO method is mucls faster and not prone to local minima. In practice of this study it is much

slower than LM but much better at driving down to convergence though it still seems to have some
problems with minima. An advantage of PSO is that neural trained with this method seem to be better at

generalization than nets trained with traditional methods. The heart of the PSO algorithm is the velocity
equation:

Vel(k+l)=randl*vel(k)+rand2*(pbest-pos(k))+rand3*(gbest-pos(k)),k isthediscretetimestep

Pos(k+l)=Pos(k)+Vel(k+1)

PbestisthepersonalbestvaluedpositionfortheparticularparticleandGbestis theglobalbestpositionso
farforentirepopulationof particles.Thevariablesrandl,rand2,andrand3arerandomnumbersonthe
interval[0,1].Pos(k)ispresentpositionof asingleparticle,andhasasmanydimensionsastheproblem.
Thisis thebasicformof thePSOequation.Themostcommonformis to includeaninertiatermand
accelerationconstants:

Vel(k+1)=[inertia*randl*vel(k)]
+[acl*rand2*(pbest-pos(k))]
+[ac2*rand3*(gbest-pos(k))]

TheaccelerationconstantsacI andac2arefixedandhavebeendeterminedbyDr.EberhartandDr.Shito
bebestfor mostproblemswhenbotharesetto 2. Forourproblemthesevaluesactuallydegrade
performanceanditseemsthebestvaluesare2foracland1forac2.Thisweighstheinfluenceoflocalbest
particlesmorethanglobal.Therearelotsof rulesof thumbbutnotmuchin thewayof heuristicsforthis
methodasit isstillrelativelynew.Thatisn'tnecessarilyabighandicapsincethealgorithmisstochasticin
natureanyway.Therecommendedinertiatermisalinearfunctionwithtimethatdecreasesfrom0.9to0.4
or astatictermsetat 1.4.Performanceis definitelybetterwiththelineartermratherthantheconstant.
Essentiallyastrainingprogressestheinfluenceofpastvelocitybecomessmaller.I havetriedmanysetsof
theaboveparameterswithvaryingdegreesofsuccess.

For neuralnet trainingthereareanothercoupleof importantparameters.Theinitial weightsize
(correspondsto initialpositionsof particles)andthemaximumvelocitycomponentsallowedarevery
important.Literaturementionsthatamaximumvelocitycomponentof 4 seemsto workwellbutin this
studythatis3 ordersof magnitudetoolarge.Also, you would logically think that a large initial weight

spread would make it easier to find the global best but experience in this research has shown the opposite is
the case. It seems that for neural net training, if we start out with a particle population tightly clustered

together they like to travel outward to find the solution. Why this happens is an active area of investigation.
Depending on the error over time, the maximum velocity component is modified. Sometimes during what

seems like a hang in a local minimum well the velocity components will saturate to the max values. If this
happens over a series of training passes (various lengths of time have been tried) the max velocity will get a

small decrease or increase (decrease seems to work better). This seems to jitter the problem out of local
minima.

Results

Here is the output on the Matlab workspace for a particular run (training set 50%, hidden layers as shown,
Iris data set, normalized, training method LM):

for 50% of the training set:
1) Single Output/Single Hidden layer: hidden=logsig, output=purelin

Architecture from left to right: 2 1
Epochs to train: 33

Generalization result: 62/75 passed test
or 82.6667%

2) Triple Output/Single Hidden layer: hidden=logsig, output=purelin
Architecture from left to right: 2 3

Epochs to train: 27
Genera.libation result: 70/75 passed test

or 93.3333%

3) Single Output/Double Hidden layer: hiddenl=purelin hidden2=logsig, output=purelin
Architecture from left to right: 3 3 1

Epochs to train: 49

Generalizationresult:71/75passedtest
or94.6667%

4)TripleOutput/DoubleHiddenlayer:hiddenl=purelinhidden2=logsig,output=purelin
Architecturefromlefttoright:6 5 3
Epochstotrain:56
Generalizationresult:72/75passedtest

or96%

All trainingsetsfolloweda similartrendwithvirtuallynodifferencefor thesedatasetsbetweenusing
logsigandtansigin thehiddenlayers.LM outperformedGradientDescentin all areaswhilePSO
outperformedLM slightlyexceptin timetotrainwhereit wasveryslow.Thisgoesagainsttheliterature
andwarrantsfurtherstudy.

Conclusion

A network can have quite good results by recasting the data into multiple outputs instead of one, using only
one hidden layer, and using either the logsig/linear or tansig/linear architectures. Overall these have the best
performance in terms of an inductive average of the three metrics: generalization, training time, and

processing load.

For the MRSR problem, generalization is the most important criteria. This paper shows that a high degree
of generalization is possible with a simple non-linear artificial neural network that uses very little

processing power and takes almost no time to train. For any application that has the potential to injure
people, generalization must be the overriding factor and percentages even higher than the 96% shown

possible with this study would need to be achieved.

If processing power and time to train (for example in a real time application) are important, Gradient
Descent may not be a smart choice. Both LM and PSO outperformed it in those areas.

This study confirmed that a CI approach may be a valid and preferred approach which leads to the
conclusion that the initial problem formulation of the MRSR along with the data preparation and mining
need to be re-examined.

References

1. Bennett, T., Fox, R., "Testing and Development of the NASA X-38 Parafoil Upper Surface Energy
Modulator (patent pending)", AIAA-99-1753

2. Birge, B.K., Walberg, G.D.,"An Investigation of Terminal Guidance and Control Techniques for a
Robotic Mars Lander", under NAG-1-2086

. Brauer, G.L., Cornick, D.E., Olson, D.W., Petersen, F.M., Stevenson, R., "Volume I, Formulation

Manual, Six-Degree-of-Freedom Program To Optimize Simulated Trajectories (6D POST)", NAS1-
18147

4. Braun, R.D., Powell, R.W., Cheatwood, F.M., Spencer, D.A., Mase, R.A., "The Mars Surveyor 2001
Lander: A First Step Toward Precision Landing", IAF-98-Q.3.03

5. Braun, Robert D. et. al., "The Mars Surveyor 2001 Lander: A First Step Toward Precision I.anding",
IAF-98-Q.3.03, 49 thIAF Congress, Melbourne Australia, Sept 28-Oct 2, 1998

6. Carman, G., Ives, D., Geller, D., "Apollo-Derived Mars Precision Lander Guidance", AIAA
Atmospheric Flight Mechanics Conference, August 10-12, 1998, Boson, MA, AIAA 98-45,0

7. Carter, P., Smith, R., "Mars Rover Sample Return - Lander Performance", AIAA 89-0633

8. Fogiel,Dr.M.,Staffof ResearchandEducationAssociation,"HandbookofMathematical,Scientific,
andEngineeringFormulas,Tables, Functions, Graphs, Transforms", REA, 1994

9. Haykin, Simon, "Neural Networks, A Comprehensive Foundation second edition", Prentice Hall, Inc.
1999

10. Ingoldby, R.N., "Guidance and Control System Design of the Viking Planetary Lander", J. Guidance

and Control, Vol. 1, No. 3, May-June 1978, pp. 189-196

11. Justus, C.G., James, B.F., Johnson, D.L., "Mars Global Reference Atmospheric Model (Mars-GRAM

3.34): Programmer's Guide", NASA Technical Memorandum 108509

12. Knacke, T.W., "Parachute Recovery Systems Design Manual", Para Publishing, PO Box 4232, Santa
Barbara, CA, 93140-4232, USA, ISBN 0-915516-85-3

13. Knacke, T.W., "Parachute Recovery Systems", NWC TP 6575

14. Krishnamurthy, Karthik and Ward, Donald T., "An Intelligent Flight Director for Autonomous
Aircraft", AIAA 2000-0168

15. Lin, Chin-Teng, George Lee, C.S., "Neural Fuzzy Systems, A Neuro-Fuzzy Synergism to Intelligent
Systems", Prentice Hall P T R, 1996

16. Machin, R., Stein, J., and Muratore, J., "An Overview of the X-38 Prototype Crew Return Vehicle
Development and Test Program", AIAA-99-1703

17. Ro, T., Queen, E., "Study of Martian Aerocapture Terminal Point Guidance", AIAA Atmospheric
Flight Mechanics Conference, August 10-12, 1998, B oson, MA, AIAA 98-4571

18. McEneaney, W.M., Mease, K.D., "Error Analysis for a Guided Mars Landing", J. Astronautical
Sciences, Vol. 39, No. 4, Oct-Dec 1991, pp. 423-445

Appendix
Steerable Parachute POST input deck:

l$search

m2001 newbase2-1iftchute-targref.inpC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

NEW altitude target: 2700m (was 2500m), this allows relaxation of altitude

targeting tolerances (+/- 150m instead of 1) and simulates about +200m above surface where we should

probably have a seperate terminal descent simulation anyway.

events 27 has been taken out and event 26 is a criterion

to stop bankangle maneuvers

Mars Lander from LaRC hand-off to 2500 m

no optimization, fixed bank on steerable chute (0 deg)

Parachute diameter = 13.0 m

Marsgram atmosphere - Feb. 3, 2002; 00 hr, 00 min, 0.0 s
In(pres) and atem input as tables
Marsgram winds*Braun multipliers input as tables

This deck optimizes (min dprngl)

Parachute is lifting with 4 steering events
1st guesses are input from "oankanglestudy.dat'

and are just constant turns allowing a study of achievable

range using this steerable chute model

Only aoa and thrust level are controls during rev grav turn

This deck is a modified version of EMQ-grvtn-newref.inp
Includes most recent M2001 chute handoff conditions & ref (south site)

Includes more up to date engine
(from CPIA/M5 Liquid propellant engine manual - unit 187):

Viking lander(max throttle cond):
Isp=210sec, Thrust=6321bf, exit area=l.588in^2
Flow rate=3.10 Ib/s., thrust coeff 1.53

Constraints:

At event 80 (critr = wr = 2.0) -

2550 < gdalt < 2850
-l.l<ur <1.1
-l.l<vr <1.1

ioflag = 3, / metric input, metric output

ipro = -1, / trajectory print flag

c Optimization variable - 5.b

c - general optimization inputs
irscl = 3, / default value (flag)
isens -- O, / forward finite differences, default value (flag)
maxitr = 50, / maximum number of iteration

opt =-1,
optph = 80,
optvar= 'dprngl',
srchm=4, / projected gradient

wopt = 1.0, / weighting for optimization variable (default val)
c - projected gradient specific inputs, all defaults except coneps(2)

coneps = 89.9,4"1.0e-04,
consex = 1.0e-6, 0.001,

fiterr = 1.0e-6, 0.001,

gamax = 10,
ideb = 0,

npad = 9.0,4.0, 14.4494,

pctcc = 0.3,
pdlmax = 2.0,

pgeps = 1.0,
prntpd = 0,

p2min = 1.0,
stminp = 0.1, 0.1,

stpmax = 1.0e+10,

c Constraint variable - 5.c

c - general Dependent Variable inputs
depph = 80,80,80,80,80,/80,80,

depvr = 'gdalt','ur','vr','ur','vr',/'long','gdlat',
ifdeg = 0,0,0,0,0,/1,1,
indxd = 1,2,3,4,5,/6,7,

ndepv = 5,/7,
c - projected gradient specific inputs

deptl = 150.0,0.1,0.1,0.1,0.1,/0.01688179,0.01688179,/target within lkm

depval = 2700.0,1.0,1.0,- 1.0,/- 1.0,93.8023,- 15.8384,

idepvr = 0,1,1,-1,-1,/0,0, /constraint types

c Controls - 5.d

c - general Independent Control inputs
indph(1) = 25,

indph(2) = 26,26,

indph(4) = 27,27,
indph(6) = 50,50,
indph(8) = 28,28,

indph(lO) = 29,29,

indvr(l) = bnkpc 1',
indvr(2) = bnkpc 1','critr',

indvr(4) = bnkpcl','critr"
indvr(6) = 'etapc I ','alppc I ',

indvr(8) = bnkpc 1','critr',

indvr(l O) = bnkpc I ','critr',

nindv = 11,

9ert(l) = 1.0e-4,
)ert(2) = 1.0e-4,1.0e-4,
)ert(4) = 1.0e-4,1.0e-4,

_ert(6) = 1.0e-4,1.0e-4,
_ert(8) = 1.0e-4,1.0e-4,

)ert(10) = 1.0e-4,1.0e-4,

*include'../../bankangleguess.dat',/ just covers u(l)-u(5), i.e. chute events

u(6) = 1.0,0.0,

u(8) = 5.0,5.0,
u(10) = -5.0,5.0,

C

c - projected gradient specific input
modew = 1,

$
*************************_*****_******************************_:*****_*******:`_*

c Trajectory Simulation Inputs
C****_**_*******_* _** _:**_ _*_*****_*** _*:¢_****:g_**:'g*** _***** _* _****:g*_***** '_*

l$gendat
title=0h*EMQ-liftchute-grvtn.inp*,
event = 1,0.0, / first event number (primary event)
fesn = 500, / final event number

c - NUMERICAL INTEGRATION METHODS p. 6.a. 15-1

npc(2) =1, / integration method (using RK) [flag]
dltmax =1, / max step size when using variable steps [s]

dltmin =0.05, / min step size [s]

dt= 1,/integration time step [s]
kstpmx=5,/max # of integration steps for each integration

npinc=5,/# of integration steps on each cycle
C*********** _ _** _***** _***** _*****************:_*_:_** _****** _******* _** _*

c Initial Event Conditions/Setup

c
c - INITIAL POSITION AND VELOCITY p. 6.a.12-1

npc(3)--l,/initial position in xi, yi, zi
npc(4)=l,/initial velocity in vxi, vyi, vzi

npc(40)=3,/reference plane for azimuth and FPA [flag] 3=?
C

c - initial conditions for batch runs, includes 'timeo' (via Matlab)

*include '../../pvstates.dat',
C

C

c - RANGE CALCULATIONS p. 6.a. 19-1

npc(12)= 1,/cross/down range option [flag] (3=?)
/ lonref=93.6484317,! from Scott (new M2001 south site)

/ latrefgd=- 15.8108183,
lonref -- 93.8023, / developed from looking at averages of various

latrefgd = -15.8384, / lifting chute non-optimized cases (showellipsebanks2.m)
c

c - PARACHUTE MODEL p. 6.a.28-1

npc(32)=2,
diamp(1)=0.0,/init val of chute diam, unfurl to 13m

drgpk(l)= 1,

idrgp(1)=0,
parif(l)=70.0,

c
c - AERODYNAMIC INPUTS p. 6.a. 1-1

npc(8)=3,/aerodynamic coefficient [flag]
sref=4.5238934,/aerodynamic reference area [m^2] (from M98)

c
c - AEROHEATING CALCULATIONS p. 6.a.2-1

npc(15)=1,/calculate aeroheating rate & tot. heat using Chapman

npc(26)=0,/no special aeroheating calculations
rn= 0.6638,/nose radius for Chapman heating (M98nom.inp)

C

c - ATMOSPHERE PARAMETERS p. 6.a.4-1
npc(5)= 6,/2/3/02, 0 hr Marsgram atmosphere input as tables

npc(6)= 2,/Marsgram winds* Braun multipliers input as tables
atmosk(l)=241.0,
atmosk(2)=5.335e-03,

c

c - CONIC CALCULATION OPTION p. 6.a.5-1
npc(l)= 3,/Keplerian conic option [flag]

mre= 1hu,/value of mean radius to be used [m](l hu = [re+rp]/2)
c

c - GRAVITY MODEL p. 6.a.10-1

npc(16)=0,/spherical or oblate model (oblate) [flag]
j2=0.1958616e-02,/spherical harmonics of gravity potential function

j3=0.3144926e-04,
j4=-0.1889437e-04,
j5=0.2669248e-05,
j6=-0.1340757e-05,

j7=0.0d0,

j8=o.o_o,
re=3393940.0,/equatorial radius [m]

rp=3376780.0,/polar radius [m]
mu=4.28282868534e+ 13,/gravitational constant (mars) [m^3/s^2]

omega=7.088218e-05,/rate of rotation of planet [tad/s]
go=3.718,/weight to mass factor (Mars surface)

c - VELOCITY LOSSES p. 6.a.25-1
npc(25)=2,/velocity loss calculation

** **

c Initial Guidance Inputs
**

iguid(l)=0,0,1,/atm.rel, aero angle guidance
alppc(1)=180.0,/initial alpha
maxtim=2000.,/maximum time
altmax=550000.,/maximum altitude
altmin=-30OO.0J minimum altitude

** **

c Vehicle Model
**

wgtsg=2176.81 l,/veh, wt. at parachute deploy, N (585.479 kg)

wpropi=372.0,/initial propellant weight, N (100 kg)
npc(30)=0Jenhanced (component) weight model

npc(9)= l,/rocket engine
npc(27) = 1, / integrate flow rate of specified engines
npc(22)=2,/input all four coef's in throttling parameter
neng=2J2 engines

ispv(l)=553.9,553.9,/Mars Isp (Earth Isp = 210 sec)

iwdf(1)=2,2,/flow rate = vac. thrust/ispv
iwpf(1)= 0,0,

iengmf(1)=0,0Jengine off initially
iengt(1)=0,0,/fixed engine angles (in tables) w.r.t body

**

c Print Block

c - PRINT VARIABLE REQUESTS p. 6.a.16-1 --->>
npvl=0,/# of print variables per line [flag]
pinc= 10,/print interval

prnc=0,/make profile for plotting

*include'../../prntblk.dat',/ printing variables
$

l$tblmlt

vwum = 1.0,
vwvm = 1.0,
$

l$tab

table = 'denkt', 1,'gdalt ;3,1,1,1,

0.0,1.0,30000,1.0,130000,1.0,
$
lStab

table = 'prest', 1,'gdalt ;6,1,1,1,
0,6.52553,1859,6.36383,4217,6.15610,6387,5.96265,8515,5.77084,
8816,5.74359,
$
l$tab

table = 'atemt', 1,'gdalt',6,1,1,1,
0,226.1419,1859,223.766,4217,220.502,6387,217.854,8515,215.292,
8816,214.936,

$
l$tab

table = 'vwut', 1,'gdalt',6,1,1,1,
0,-0.1248,1859,0.02672,4217,0.19915,6387,0.55803,8515,0.86006,

8816,0.85601,
$

l$tab

table = 'vwvt', 1,'gdalt',6,1,1,1,
0,0.200574,1859,0.42458,4217,0.68911,6387,1.5575,8515,2.2659,

8816,2.2508,
$
l$tab

table = 'vwwt',O,O.O,

$
l$tab

table = 'tvclt',O,2646.0,
$
l$tab

table = 'tvc2t',O,2646.0,
$
I$tab

table = 'aelt',O,O.O01,
$

I$tab
table = 'ae2t',O,O.O01,
$

I$tab

table = 'pilt',O,180.0,
$

l$tab

table = 'yi 1t',O,O.O,
$
l$tab

table = 'pi2t',O,O.O,
$

l$tab

table = 'yi2t',O,O.O,

/ engine #1 gimbal pitch angle

/ engine #1 gimbal yaw angle

/ engine #2 gimbal pitch angle

/ engine #2 gimbal yaw angle

$
l$tab
table= 'wdlt',O,12.98,/ engine #1 flow rate
$
l$tab

table = 'wd2t',O,12.98, / engine #2 flow rate
$

l$tab

table='cdt'O, 1.7,
$

I$tab

table='clt',O,O.O,
$
l$tab

table='cdp 1t',O,O.41,
endphs=l,
$

C

c Parachute fully deployed
l$gendat

event=22.,O.O, / primary event
critr='diamp I ',
value= 13.0,

parif(1)=0.0,

wgtsg = 1937.297,
endphs= 1,
$

c - - - Convert parachute to 'airplane', simulates lifting/steerable chute

l$gendat

event=25.,O.O,/primary event
critr='tdurp',
value=O.O,

sref=132.73, / surface area of parachute about 13m (pi*r^2) incorporated into lander

npc(32)=O, / don't calculate parachute drag
iguid(1)=O, / aero-guidance
iguid(2)=l, /individual component steering

iguid(6)=O, / alpha carried over
iguid(7)=O, / beta carried over

iguid(8)=l, / bnkang input (from targeting algorithm)
$
l$tblmlt

$
l$tab

table='cdt',O,O.41,
$

l$tab

table='clt',O,.41,/lift coeff includes parachute, i.e. =1"0.41

endphs = 1,
$

c - - 2nd chance to steer 'airplane'
l$gendat
event=26.,

critr='tdurp',
endphs = 1,
$

c - - 3rd chance to steer 'airplane'

l$gendat
event=27.,
critr='tdurp',
endphs= 1,
$
c- -4thchancetosteer'airplane'
I$gendat
event=28.,
critr='tdurp',
endphs= 1,
$
c- -5thchancetosteer'airplane'
I$gendat
event=29.,
critr='tdurp',
endphs= 1,
$
c- - -jetisonparachute;turnonengine#1(startofreversegravityturn)
l$gendat
event=50,0.0,
critr= 'gdait',/ roving event (in case event 26 never happens)
value = 3500.0,

npc(32)=0, / jettison parachute
diamp(l)=0,

wjett = 276.702, / weight of parachute lost (N)
sref=2.0, / new surface area

iengmf(1) = 1,0,
iwpf(l) = 1,0,

iguid(1) = 0, / aero-guidance
iguid(2) = 1, / individual component steering

iguid(6) = 1, / alpha input by targeting algo
iguid(7) = 0, / beta carried over

iguid(8) = 0, / bnkang carried over
$

l$tblmlt
$

l$tab
table='cdt',0,2.0,
$

l$tab
table='clt',0,0.0,

$
l$tab

table='cdp I t',0,0.0,

endphs = 1,
$

cc - marks 2500 meter mark (Martian surface)

l$gendat
event=80,0.0, / primary event - this must happen or targeting failed
critr='wr',
value = 2.0,

iengmf(l) = 0,0,
iwpf(l) = 0,0,
endphs=l,
$

CC

C
**

c This event marks arrival at the Martian surface

I$gendat
event=500,0.0, / primary event

critr='tdurp',
value=0,

endphs=l,
end job=l,

endprb=l,
$

Complete list of all files modified/used during grant cycle
TreePrint listing of: C:\schoolLNASAkDocskNASAfiles2001to2002

C:kschoolLNAS AkDoc sLNAS Afiles2001 to2002

II treeprint.txt

II
+--dat

bkb3guess.dat

bkb3guess2.dat
chutestates.dat
chutestates2.dat

fulliris.txt
hoverinitcond.dat

prntblk.bak
prntblk.dat

pvstates.dat

+--docs

List of all papers for PHD research.doc
PHD TIMELINE.doc

Progress Update l.doc

Proposal sum2001.doc
Research Update.doc
summer.txt

Thesistemplate I .doc

+--Mat
bc4batch.mat

chutestatplot.mat

copy_of_bc 1871 .mat
copy. of lc.mat

copy. of lc1747_18.mat
copy. of m2001newbase.mat

copy_of_rwp 1rps.mat
forward.mat
forward3.mat

inverse.mat
IrisWtsLM.mat

ic4batch.mat
lcsaveas.mat

nettrain-76init-bc 17baseline.mat
nettrain-76init-bc 17baselineMOD. mat

nettrain-nominit-bc17baseline.mat
nettrain-nominit-bc17baselineMOD.mat
nettrainI.mat
nettrain2.mat
nettrain3.mat
nettrainer-weights.mat
nettrainer-wts-Ilayer.mat
nettrainer2-wts-llayer-inertialBPX.mat
nettrainer2-wts-llayer-inertiallm.mat
nettrainer2-wts-1layer-inertialPSO.mat
nettrainer2-wts-21ayers-unmodified-inertial-lm.mat
pathdatl.mat
pickstates4.mat
pickstates5.mat
weightsf6.mat
weightsxor.mat

\--oldMAT
[allptsCHUTEno25.mat
[lc4batch.mat
I

+--outs

[copy_of_lc.out

[copy_of_m2001 newbase.out
[Ic4batch.out

[Icsaveas.out
I
\--oldout

EMQ-grvtn-newref.out

hover30deg.out
m2001 newbase-liftchute-noopt-bnk0.out

m2001newbase-liflchute-noopt-bnk25.out
m2001newbase-liftchute-noopt-bnkneg25.out

m2001 newbase-liftchute-noopt-bnkstudy.out
m2001 newbase-tiftchute 15LD-noopt-bnkstudy.out

m2001 newbase-liftchute 1LD-noopt-bnkstudy.out
m2001 newbase-liftchute2.5LD-noopt-bnkstudy.out

m2001 newbase-liftchute25LD-noopt-bnkstudy.out
m2001 newbase-liftchute2LD-noopt-bnkstudy.out
m2001 newbase-liftchute75LD-noopt-bnkstudy.out
m2001 newbase-thrustchute-noopt-bnkstudy.out

m2001 newbase-thrustchute 12kg-noopt-bnkstudy.out
m2001newbase.out

m2001 newbase2-1iftchute-noopt-bnkstudy.out
m2001 newbase2-1iftchute-targref.out
m2001 newbase2-1i ftchute.out

m2001newbase2-1iftchutel5LD-noopt-bnkstudy.out
m2001newbase2-1iftchutel5LD-targref.out
m2001 newbase2-1iftchute 15LD.out

m2001 newbase2-1iftchute 1LD-noopt-bnkstudy.out
m2001 newbase2-1iftchute 1LD-targref.out
m2001 newbase2-liftchute 1LD.out

m2001 newbase2-1iftchute25LD-noopt-bnkstudy.out

m2001 newbase2-1iftchute25LD-targref.out
m2001 newbase2-1iftchute25LD.out

m2001 newbase2-1iftchute2LD-noopt-bnkstudy.out

m2001newbase2-1iftchute2LD-targref.out
m2001newbase2-1ittchute2LD.out
m200l newbase2-1iftchute75LD-noopt-bnkstudy.out
m2001 newbase2-1iftchute75LD-targref.out

m2001 newbase2-1iftchute75LD.out
m2001 newbase2-thrustchute- noopt-bnkstudy,out
m2OOlnewbase2-thrustchute.out

m2001 newbase2-thrustc hute 12kg-noopt-bnkstudy.out

m2001 newbase2-thrustchute 12kg.out
m2001 newbase2.out

tstnet.out

_ost3d source
aero.f

aero.o
balland.f

balland.o

calspe.f
calspe.o

guidance.f
guidance.o
Makefile

Makefile.log
Makefile calspe

Makefile_calspe_new
Makefile calspe_old

Makefile dbg
Makefile_dbg caispe

mars entry5a.inp
master.o

p3d
p3d_calspe
p3d_dbg
p3d_dbg_calspe

phz×m.o

k--support
chutestatplot.m
demonormalize.m

extho.m
f6.m

f6pso.m
learnga.m
learnlm.m

load_DATA_mat.m
m2001viewsite.m

MatPathData.m
nettrainer.m

nettrainer2, m
normalize, m

p2check.m

p3dbatchSPACE2000.m
p3dbatchspace2000PSO.m
p3dSPACE2000.m

p3dSPACE2000b.m

pso.m

startup.m

tbpx I .m

tbpx2.m

tbpx3.m

testf6.m

testnettrainer, m

testpso.m

tgal.m

tga2.m

tlml.m

tlm2.m

tlm3.m

tpso 1.m

tpso2.m

tpso2mod.m

tpso2oid.m

tpso3.m

trainbpx.m

trainga.m

trainlm.m

trainpso.m

tstmov.m

unwrapmat.m

wrapmat.m

Iris Data Set

The Iris data set used here was downloaded from a website after a google search for the words "h-is Data

Set'. It is presented here in the exact downloaded form:

Species Sepal Sepal Petal Petal

length width length width

1 49 30 14 2

1 51 38 19 4

1 52 41 15 1

1 54 34 15 4

1 50 36 14 2

1 57 44 15 4

1 46 32 14 2

1 50 34 16 4

1 51 35 14 2

1 49 31 15 2

1 50 34 15 2

1 58 40 12 2

1 43 30 ii 1

1 50 32 12 2

1 50 30 16 2

1 48 34 19 2

1 51 38 16 2

1 48 30 14 3

1 55 42 14 2

1 44 30 13 2

1 54 39 17 4

1 48 34 16 2

1 51 35 14 3

1 52 35 15 2

51
54
51
57
45
48
53
44
54
54
49
5O
51
46
47
47
5O
5O
55
46
51
52
49
48
46
44
66
61
6O
52
49
6O
56
61
55
57
63
69
57
61
64
63
6O
56
63
5O
59
55
62
51
57
58
56
67
67
55
56

37
34
38
38
23
30
37
29
39
37
31
35
34
31
32
32
33
35
35
34
33
34
36
31
36
32
29
29
34
27
24
27
27
3O
24
3O
33
31
28
28
29
23
22
30
25
20
30
25
29
25
28
27
29
31
31
24
3O

15
17
15
17
13
14
15
14
13
15
15
13
15
15
13
16
14
16
13
14
17
14
14
16
i0
13
46
47
45
39
33
51
42
46
37
42
47
49
45
47
43
44
4O
41
49
35
42
4O
43
3O
41
39
36
47
44
38
45

4
2
3
3
3
1
2
2
4
2
1
3
2
2
2
2
2
6
2
3
5
2
1
2
2
2

13
14
16
14
i0
16
13
14
i0
12
16
15
13
12
13
13
i0
13
15
i0
15
13
13
ii
13
12
13
15
14
ii
15

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

61
5O
55
64
55
66
68
58
54
56
62
65
58
57
59
70
60
57
67
63
65
58
68
67
63
69
64
69
72
57
65
65
62
64
61
64
77
67
62
59
63
72
76
64
61
79
72
63
77
58
67
49
67
77
56
65
58

28
23
26
32
23
3O
28
27
3O
25
22
28
26
29
32
32
29
26
3O
33
3O
28
30
31
28
31
27
31
36
25
32
3O
34
28
26
28
3O
3O
28
3O
25
30
3O
32
3O
38
32
27
28
27
25
25
33
38
28
3O
27

40
33
44
45
40
44
48
41
45
39
45
46
40
42
48
47
45
35
5O
60
52
51
55
56
51
51
53
54
61
5O
51
58
54
56
56
56
61
52
48
51
5O
58
66
53
49
64
6O
49
67
51
58
45
57
67
49
55
51

13
i0
12
15
13
14
14
!0
15
ii
15
15
12
13
18
14
15
i0
17
25
2O
24
21
24
15
23
19
21
25
20
2O
22
23
21
14
22
23
23
18
18
19
16
21
23
18
20
18
18
20
19
18
17
21
22
20
18
19

3
3
3
3
3
3
3
3
3
3
3
3

74
69
68
73
71
60
77
67
63
60
64
63

28
32
32
29
30
22
26
33
29
30
31
34

61
57
59
63
59
5O
69
57
56
48
55
56

19
23
23
18
21
15
23
25
18
18
18
24

